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Abstract. Relative motions of particle pairs in a dense Lennard Jones liquid are investigated 
by molecular dynamia (MD) calculations. The relative velocities are split into their com- 
ponents parallel and perpendicular to the line of particles and the corresponding time 
correlation functions are calculated. The dependence of these correlation functions on the 
interparticle separation isdiscussed. Furthermore. the trajectoriesofasubset ofparticlesof 
the same system are determined by generalized Langevin dynamia (GLD) simulation, The 
reIiability of the atomic motion generated by the GLD method is verified by comparing the 
parallel and perpendicular relative velocity correlation functions resulting from GLD with 
those from MD. 

1. Introduction 

A proper understanding of the dynamic behaviour of particle pairs in liquids is of 
fundamental interest for both the theoretical treatment of microscopic processes in 
liquids (e.g. transport properties, chemical kinetics, etc) and the correct interpretation 
of experimental measurements (e.g. light absorption or scattering, NMR, vibrational 
relaxation, viscosity, etc). Molecular dynamics (MD) simulation is the tool which is 
commonly used for the study of relative diffusion in fluids at short time scales [1-6], 
since this kindof information cannot be obtainedeasily from experiments. The influence 
of separation on the relative velocity correlation functions has been analysed in earlier 
MD studies, but little attention has been paid to the orientational dependence of these 
functions, i.e. to the differences between the correlation functions for the components 
of the relative velocities parallel and orthogonal to the interparticle direction. Since the 
interparticle forces act along the line joining the particle pairs, it may be expected that 
the changes in the components of the relative velocities along this line should be greater 
than in other directions. Differences between parallel and orthogonal relative diffusion 
are discussed in section 2. 

Theoretical and computer simulation treatments of the relative diffusion in liquids 
are frequently based on stochastic models using the generalized Langevin equation 
(GLE). The GLE is very helpful because it allows us to omit explicit consideration of some 
of the particles of the system (solvent), the effects of which are taken into account by 
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means of random and frictional forces. However, the GLE has only been derived rig- 
orously for a single solute particle, andapproximateextensionsmust be usedfor systems 
of interacting particles [7-111. 

Generalized Langevin dynamics (GLD) is an economic method of computer simu- 
lation[l2,13], analternative  to^^, whichisveryusefulfor thestudyofcomplexsystems 
orproblemsrequiring very longsimulations. In GLD, it is assumedthat the solute particles 
obey a system of coupled GLES which are numerically integrated. One of the difficulties 
in the use of this method is that suitable effective potentials (We&)) [14] and memories 
(h&(t)) [13,15], which are dependent on the thermodynamic state of the system 
(density, temperature, concentration), should be used to obtain realistic trajectories of 
the solute atoms. Moreover, as the solvent effects on a given solute particle can be 
affected by the presence of other nearby solute particles, Weff(r) and Me&) would 
also be configuration dependent. Nevertheless, pair additive potentials and isotropic 
memory functions independent of the relative separations are commonly used in GLD 
simulations. The aim of section 3 is to discuss the reliability of the relative motions 
rcsulting from GLD simulations. 
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2. Relative velocity correlation Functions in liquids 

2.1. MD simulations 

We simulated the trajectories of the atoms in liquid Kr at T =  134.3 K and p = 
1.7956 x 10-’atoms/A3(T* = 0.805andp’ = 0.861,inreducedunits). hmsimulations 
were carried out on a set of N = 530 particles in a cubic box with periodic boundary 
conditions. The interaction potential was a Lennard-Jones potential with a cutoff at 
2.40. The Beeman algorithm with a time step of lO-’ps was used for the numerical 
integration of the classical equations of motion. The radial distribution functions g(r) ,  
the velocity autocorrelation functions of single particles C(f) and the relative pair 
velocity autocorrelation functions C,(t) for the neighbouringparticles (a s r 5 20) were 
determined from the configurations generated. 

In order to analyse the orientational dependence of the relative velocity correlation 
functionswe decomposed the relativevelocitiesintocomponents parallel andorthogonal 
to the line joining the particle pairs (Tildesley and Madden [16] used a similar procedure 
for the study of diffusion in molecular liquids). In addition to the orientational depen- 
dence of the relative diffusion, we analysed its spatial dependence by computing the 
time correlation functions restricted to different initial interparticle separations (31. We 
proceeded as follows. We divided the radial region around each particle at time f = 0 
into 10 zones of equal width, Ar = 0.1 U, and the relative pair velocity autocorrelation 
functions, restricted to pairs of particles within every zone ( i  = 1, . I . , lo), were deter- 
mined 

where Vm&) = o,(t) - ~ , + ( f )  and the statistical averages are restricted to particle pairs 
within the ith zone. Moreover, the relative velocities of each pair of particles were 
resolved into two components, one along the interparticle vector and the other orthog- 
onal to it. Projections were performed onto the initial interparticle vector reo(0) since 
the relaxation times of the velocities in dense liquids are short compared with the time 
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Figure 1. The normalized relative pair velocity autocorrelation functions for the different 
initial inferparticle separations: (a) zones 1 to 5; ( 6 )  zones 6 to 10. 

that it takes for the relative position of particles to change considerably. We calculated 
the restricted time correlation functions for the parallel (Cp(t; i)) and orthogonal 
(CF(t; i ))  components of the relative velocities 

,L .\ 

where VP ( I )  = V,( t )  um#(0). V;p(r) = V& X u,(O) and uoo(0) is a unitary vector 
along the initial interparticle separation, u,!(O) = r,pr(0)/r,,,,(O). The mean correlation 
functions for the relative velocities (C,(I)) and for their parallel (Cp(t)) and orthogonal 
(C:( t ) )  components were determined by averaging the functions corresponding to the 
different zones. 

*e 

2.2. Results and discussion 

The C,(l; 17 functions resulting from the MD simulations are shown in figure 1. We can 
see that there is a dependence of C,(t; i) on the initial separation which is greater when 
theparticlesarecloser. Fromi = 1 toi = S,theC,(t; i)minimabecomeshallower(except 
f o r i  = 1 and 2) and their positions are shifted towards higher values oft. It should be 
noted that these zones correspond to pairs made up of a given particle and its neighbours 
in the first coordination shell. For the last zones (i = 5 to i = lo), when the initial 
separation increases, the minima are slightly deeper but their positions are not sig- 
nificantly shifted. Our results are in agreement with those found by Posch et a1 [3] for a 
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Fbyre 2. The Same as 6gwe I ,  but lor the components of the relative velocities parallel to 
the initial interparticle directions. 

liquid of similar characteristics. Nevertheless, the changes of C& i) with i are rather 
small and the existence of a minimum for i = 2 which is deeper than fori = 1 cannot be 
interpreted easily. These results suggested the convenience of considering properties 
which could provide more detailed and suitable descriptionsof the relative motions. For 
this reason, we computed Cp(t; i) and C:(r; i). 

As may be observed in figures 2 and 3, there is a marked dependence of the 
Cr(t; i) functions on the initial separation even for the last zones. In contrast, small 
differences may be observed among the C:(t; t? functions. Moreover, C;(r; i) are very 
close to the functions averaged over the different zones (figure 4). These results cor- 
roborate the suitability of our decomposition of the relative velocities. 

The evolution of C?(r; i) with the initial separation is consistent with the changes of 
mean force between the particles. This force is obtained as the gradient of the mean 
force potential (figure 5 )  defined from g(r) by the expression 

W(r) = -ksTlog[g(r)]. (2.4) 
The depth of the minima increases with the mean force, i.e. the backscattering is very 
sharp for i = 1 and 2, decreases from i = '2 to 6 and increases from i = 6 to 10. As for 
C<(f; i), the positions of the minima only are shifted for pairs within the first zones. For 
these pairs, the minimaof Cp(t; i) are largely determined by the collisions between the 
particles of the pair considered and, therefore, they are reached at shorter times when 
the particles are closer. For the pairs corresponding to the last zones, the influence of 
the separation on the position of the minima is negligible and they are located at the 
same position as the minima of the averaged functions represented in figure 4. This result 
confirms that the backscattering for particles in the second shell cannot be associated 
with the interactions between the particle belonging to the pair. It should be pointed out 
that, consistently with the W(r)  shape, the depth of the Cp(t; i) minima for i = 1 and 
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Figure 3. The same as figure Z(a) ,  but for the 
orthogonal components of the relative velocities. 
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Figure 4. The normalized mean automrrclation 
fuuncuonsfor Ihc rciativc velociuer(C.(r))and for 
their parallel (C! ( r ) )  and orthogonal (C?(r) )  
components. 

Figure 5. The mean force potential, equation 
(2.4). The separation intervals corresponding to 
the different zones (i = 1 to i = 10) are indicated. 

0 

i = 2 are similar. This shows that the C,(t; i )  findings fori = 1 and 2 are the result of the 
combination of two functions ((C$'(t; i) and C;(t; i)) with their minima located at 
different positions. 
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3. Relative motions in GLD simulations 

3.1. GLE for s y s t e m  of inferactingparticles 

As indicated in section 1, there is no rigorous deduction of a simple GLE for a system 
of interacting particles but different reasonable approximations have been proposed. 
Vesely and Posch [lo] derived a GLE for two interacting particles which includes the 
crossmemory terms and the intersolute forces. However, this formulation cannot easily 
be generalized to systems of N particles. An alternative treatment, frequently applied 
to the study of relative diffusion [3,6] and chemical kinetics [17], is founded on the 
assumption that the time evolutionof the relative positionof two particles (or any other 
reaction coordinate) obeys a GLE, which incorporates an external force derived from a 
mean force potential. It should be pointed out that this OLE may be derived only when 
it is assumed that the coordinate is linearly coupled to a bath of harmonic oscillators. 
Moreover, this GLE is only useful for the study of specific problems directly related with 
the relative dynamics of particle pairs. 

One of the simplest methods of extending the GLE to a system of N interacting 
particles is to assume that the effectsof the intersolute forces are accounted for by merely 
adding an extra term to the GLE for a single particle 19, 111. Then, each solute particle 
movcs according to a system of coupled GLES 

M Canales and J A Padr6 

= u w p ( 0  

mm~=#(r) = - m,M,(r - f’)U,(r’)di’ + R , ( f )  + Fcp(rm#(f ) )  (3.1) 

and p = 1,2,3 
jot 

a, p = 1, . . . , N 

where the index p refers to the three Cartesian coordinates. The frictional force iswritten 
as a convolution in time of the velocity with the memory function (Me@)). The force on 
the or particle due to its interaction with the remaining p particles (Fep(re#(r)) should be 
derived from a solvent averaged potential. Furthermore, it is also commonly assumed 
that the random forces R,(r) are related to M,(r) through the fluctuation-dissipation 
theorem [9] 

(R,(t)Rg.(O)) = ~ , g ~ , , k ~ T m , M , ( O  (3.2) 
where ks is the Boltzmann constant and T the temperature. It should be emphasized 
that equations (3.1) and (3.2)donot come fromany carefulderivation from the Liouville 
equation, but are assumed as a reasonable hypothesis. 

3.2. GLD simularions 

Generalized Langevin dynamics (GLD) is a computer simulation method [13] based on 
the hypothesis that a set of interacting particles in solution obey equations (3.1) and 
(3.2), i.e. the classical Newtonian equations are substituted by stochastic GLES. Recent 
results [3,11, 181 indicate that the atomic motions in liquids may be realistically simu- 
lated by the GLD method using memory functions which are non-local in time but local 
in space. However, Straub ez a1 161 observed that memories are strongly dependent on 
interparticle separation. The reliability of the relative motions obtained from GLD 
simulations using pair additive potentials and memory functions which are independent 
of the relative separations is discussed below. 
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Figure 6. The effective mean force potential 
(W&) used in GLD compared with the mean 
force potential (W(r) .  equation (2.4)) and with 
the Lennard-Jones potential (Wu(r)), 

Figure 7. The radial distribution functions 
resulting from MD and GLD simulations. 

We used the GLD method for the simulation of the trajectories of a subset of particles 
of the system which was simulated by MD. It was assumed that these particles play the 
role of ‘solute’ whereas the other particles (‘solvent’) were not explicitly considered in 
the~r~s imula t ion  (in thiscasesoluteandsolvent particlesareidentical). Weperformed 
GLD simulations of 92 atoms of Kr in the same box as in the MD simulation and the 
temperature was also kept at 134.3 K. The stochastic equations of motion (3.1) were 
numerically integrated using the algorithm described in 1191. As in MD, a time step of 
lo-* ps was used. The R,Jt) forces were assumed to be Gaussian [13]. 

The intersolute forces were calculated from the effective solvent averaged pair 
potential shown in figure 6 .  This Wefdr) was determined from the g(r) function obtained 
in the MD simulation following the procedure proposed in a previous paper 1141. 
Although We&) potentials are in general dependent on the solute concentration, the 
Weff(r) corresponding to the concentration in this work is close to the mean force 
potential at infinite dilution W ( r )  (figure 6). The interactions were truncated at 3.4~7, 
which corresponds to the third Wefi(r) maximum (it should be noted that the range of 
these interactions is greater than for the Leonard-Jones potential). As expected, the 
solute structure resulting from the GLD simulation with the We,,(r) potential is in accord- 
ance with the structure obtained by MD (figure 7). In order to discuss the influence of 
the intersolute forces on the relative diffusion, we carried out a complementary GLD 
simulation in identical conditions but truncating We&) at its first minimum ( r  = 1.124). 

The effective memory function used in the GLD simulations is shown in figure 3 of 
1151. This M,At) was calculated from the C(t) determined from the MD simulation 
according to a previously described procedure 1131. For the integration of the GLE, the 
Laplace transform of M,,(t) was fitted to a Mori continued-fraction expansion of 25 
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terms [15]. The C(t)  function resultingfrom GLD using Wetdr) and Mett(t) is in acceptable 
agreement with that from MD (figure 8). The differences between the two C(t)  functions 
may be attributed to defects in the fitting of M&t) to the Mori continued-fraction 
expansion. 

3.3. Test of the CLD method 

To perform the test of the GLD method we took as exact the results obtained from MD. 
It has already been shown (figures 7 and 8) that the structure (g(r)) and dynamics of 
single particles (C(r)) resulting from MD and GLD are in good agreement. However, this 
cannot be considered as a definitive test because the Wet&) potential and the Me&) 
memory used in GLD were modelled by assuming that theg(r) and C ( f )  functions would 
be well reproduced by GLD. Hence, other correlation functions must be considered to 
perfom a reliable test of the GLD method. In previous papers, we proved that properties 
such as the shape of the trajectories [IS] or the van Hove functions [13] are acceptably 
reproduced by GLD, whereas noticeable discrepancies are observed in the case of col- 
lective properties (distinct time correlations) [20] which are strongly dependent on the 
hydrodynamic interactions (the effects of these interactions are not taken into account 
in the GLD simulations). In thissection. thecomparison between the MD and CLD results 
isextended to the relative motionsofparticles.Thismay beimportantforpossiblefuture 
applications of the GLD simulation method to the study of chemical reactions in solution. 

It is easy to show that the relation between the time correlation functions for the 
velocities and the relative velocities is [3,4] 

W,(t) ' V@(O)) = 2(u,(t). U,(O) )  - 2 b d t ) .  ua(0)) .  (3.3) 
The last term in (3.3) corresponds to the cross correlations between the velocities of 
different particles. These correlations may be associated with the indirect dynamic 
interactions due to the coupling between the motions of different particles through the 
flows that they induce in the other neighbouring particles (hydrodynamic interactions 
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Figure 9. The normalized correlation functions for the parallel components of the relative 
velocities resulting from MD (-)and from GLD using the We&) potential (. . . .)and a 
soft-sphere potential with the same repulsive part (---). 

at microscopic scale). The effects of these indirect interactions were not included in the 
GLD simulations. However, the term corresponding to the cross correlations is markedly 
smaller than the other two terms in equation (3.3) [4] (the contribution of the cross 
velocity correlations to Cr(t) is of the same order of magnitude as the discrepancies 
between the C(f ) s  in figure 8). Therefore, the normalized velocity autocorrelation 
functions C(t) and C,(t) should be very similar, and it can then be expected that the C,(r) 
from GLD should be in accordance with that from MD. Nevertheless, the agreement 
between the Cr(t)s will not necessarily imply agreement between other, more detailed, 
functions such as Cp(t; i) and CF(t; i). 

As may be seen in figure 9 the evolution of C r ( f ;  i) with i is quite well reproduced by 
GLD. In the case of C;(r; i), the results are not significant, since the changes with i are 
rather small and the C;(r; i) functions are very close to C&). As we used a memory 
function which is isotropic and independent of the presence of neighbouring particles, 
the differences between the Cp(t; i) and C;(t; i) functions as well as among the Cp(t; i )  
functions for the different values of i would he associated with the interaction forces. 
This is consistent with the close relation observed between the W ( r )  shape and the i- 
dependence of Cp(t; i). In order to assess the influence of Weff(r) ,  we carried out GLD 
simulations with the same memory but a soft-sphere potential ( Weff(r)  was truncated at 
its first minimum). In this case, the discrepancies between the Q(f; i) functions from 
GLD and MD for different separations are more marked (figure 9). This confirms that 
suitable We&) potentials should he used for reproducing the changes in the relative 
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diffusion with the interparticle separation. It should be noted that the disagreements 
between MD and GLD with the soft-sphere potential become less apparent for Cp(t). This 
confirms that more detailed functions such as CF(t; i) must be usedfor a reliable test of 
GLD. Moreover, Cr(t;i) functionsarelesssensitiveto thevaluesofithan Ce(t; i), because 
C,(t; i)s also contain important contributions of CF(t; i)s and these functions are almost 
independent of the interparticle separation. 

Our results show that the relative motions in liquids at short time scales may be 
realistically reproduced from GLD simulations using suitable potentials and time-depen- 
dent memories, whereas the use of memory functions dependent on the interparticle 
separation is not essential. This conclusion is consistent with the results from other 
studies [3,11] but seems to contradict the dependence of the memory on the separation 
observed by Straub et ai 161. However, the findings of Straub et ai cannot be directly 
compared with those in this paper, since they assumed a GLE for the relative distance 
(not for the position of each particle). Moreover, they calculated M ( I ) ,  restricted to 
different separations, from MD simulations replacing the potential by a harmonic con- 
fining potential [21]. We would point out that, unlike theoretical studies, computer 
simulations using a GLE for each solute particle would be more advantageous than those 
considering a GLE for a reaction coordinate. The GLD method can supply more detailed 
information on systems of several solute particles (e.g. in chemical reactions between 
molecules) and GLD computer programs are very similar to ordinary MD programs. 

M Canales and J A Padr6 

4. Concluding remarks 

The results presented in this study confirm that the dependence of relative diffusion on 
separation becomes more apparent when the relative velocities are resolved into 
components parallel and perpendicular to the initial interparticle vector. This indicates 
that the Cp(t; i) functions may be very useful for checking the results of theoretical 
models or describing in detail the relative motions in liquids. We have employed these 
functions for testing the reliability of the OLD method, It has been corroborated that the 
Cp(t; i) functions are more sensitive to the differences in relative motion than other, less 
detailed, correlation functions (Cr(t; i), Cp(t)). Moreover, unlike Cr(t; i) fori = 1 and 
2, the evolution of the Cp(l; i )  functions (position and depth of the minima) with the 
interparticle separation reflect the characteristics of the mean force potential. 

It has been shown that the GLD method, based on the approximate equations (3.1) 
and (3.2), may reproduce the main characteristics of relative motions in liquids at short 
time scales (it is well known that hydrodynamic interactions have a non-negligible effect 
on properties which occur over a relatively long time). The time correlation functions 
for the components of the relative velocities have been acceptably reproduced by GLD 
simulations using suitable Weff(r) pair-additive potentials and Me"(!) functions which are 
independent of the existence of other neighbouring solute particles. More refined 
stochasticsimulations would require the use of more complex GLEs [8, lo] which cannot 
easily be used in computer simulations of systems of interacting particles (it should be 
remembered that the aim of the GLD method is to save computational resources). 

Finally, we want to point out that the true purpose of GLD is the study of systems 
more complicated than that considered in this work (colloidal systems, macromolecules 
and chemical reactions in solution, etc). Then, the MD simulations required to obtain 
W,&r) and Me&) would be very costly and other approximate methods should be 
probably employed. Nevertheless, theuseof simple liquids whichcan beeasilysimulated 
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by~oisveryhelpfulinorder toinvestigate thepossibilitiesandlimitsofthec~omethod. 
The same procedure was employed in earlier papers [13-15, 18-20] for checking the 
ability of GLD to reproduce other properties. 
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